Nel noto film Minority Report i criminali venivano arrestati
ancora prima di commettere un reato perché c'era chi li prevedeva in anticipo. Bene, c'è chi ritiene che questo sia parzialmente possibile anche nel mondo reale. Grazie alle potenzialità del machine learning. È il campo del
predictive policing, la "sorveglianza predittiva" che applica algoritmi di intelligenza artificiale ai dati storici della criminalità.
Il presupposto di base su cui si regge questa visione è che ci siano
regolarità identificabili nella distribuzione dei crimini in una città. Quindi si parte da una base dati storica dei crimini e, arricchendola nel tempo con i nuovi reati, si arriva a fare previsioni su dove un determinato tipo di crimine più probabilmente si verificherà. Più precisamente, si ottiene la
probabilità che un dato crimine si verifichi in un dato lasso di tempo in una data area, anche piccola (diciamo un gruppo di isolati).
Su questa previsione, le forze dell'ordine dovrebbero poter organizzare meglio i propri turni di ronda. Per avere la massima probabilità di
cogliere un reato in corso. In realtà non sappiamo quali forze dell'ordine utilizzino già soluzioni di predictive policing, perché quasi nessuna lo comunica chiaramente. E questo impedisce di valutare quanto l'idea di prevedere i crimini sia davvero efficace.
Una base teorica però esiste: secondo diversi studi di criminologia ci sono
correlazioni tra struttura dell'ambiente urbano e distribuzione dei reati. In parte è semplice buon senso: è logico che certi tipi di crimini siano più frequenti in aree poco illuminate o scarsamente visibili. Passare da questo alla quantificazione della probabilità effettiva di un crimine
non è scontato. E comunque ha i suoi limiti.
Soprattutto perché i dati storici da cui partire per il predictive policing
non sono quasi mai oggettivi. In particolare, ci sono quartieri che mostrano una frequenza elevata di piccoli reati solo perché sono stati più controllati dalla polizia, non perché siano effettivamente più "criminali" di altri. Come in ogni applicazione di machine learning, il "
pregiudizio" dei dati di partenza porta ad algoritmi inefficaci.
Resta il fatto che il predictive policing è un campo comunque in sviluppo. Oggi qualsiasi aumento, anche teorico, nell'efficienza della
prevenzione dei reati è benvenuto, come dimostra il boom della
videosorveglianza. Il predictive policing è solo un elemento in più.